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EXTENSION OF WIENER’S TAUBERIAN IDENTITY
AND MULTIPLIERS ON THE MARCINKIEWICZ SPACE
BY
KA-SING LAU'

ABSTRACT. This is a continuation of the work of Bertrandias, Lee and Lau on
Wiener’s generalized harmonic analysis. Among the other results, we extend Wiener’s
Tauberian identity to cover a larger class of functions; we characterize the multi-
pliers on the Marcinkiewicz space 92, and we obtain a Tauberian theorem on 9.
with full generality.

1. Introduction. For a complex valued Borel measurable function f on R such that
lim;_ , 2T) /7| f(x) | dx exists, Wiener [13] defined the integrated Fourier trans-
formation (Wiener transformation) g = W( f )of fas

—iux __ 1

(1.1) g(u)Z%(/ +/ f(x)¢ dx+ff(x) dx

He then introduced a Tauberian theorem and proved that the mean square module
of the above function f equals the quadratic variation of its transformation g, i.e.

(12)  lim —j | /(x) P dx = lim —f |g(u+e) — g(u—e) P du.

The above transformation and identity were used by Wiener to study the spectra of
certain important classes of functions which are not covered by classical harmonic
analysis (cf. [13, 15, 16]).

For each f € L3 _(R), we let

L 12
1= 17 lly: = T (Zle_gf(x)de)

and M? = (f: fE€ LI (R), I fIl < oo} We call 9? the Marcinkiewicz space [10].
For any Borel measurable function g on R, let

-_— 1 0 172
Il = gl = T (3 [ 8+ 0) — g(u— )P

and V2 = {g: g is Borel measurable and |/ g|l < c0}. Such a class of functions was
first investigated by Hardy and Littlewood [S] and is called the integrated Lipschitz
class. By identifying functions whose differences have zero norm, both 9? and V2

Received by the editors January 26, 1982.

1980 Mathematics Subject Classification. Primary 42A45; Secondary 42A38.

'Supported by NSF Grant MCS7903638. Part of the work was done while the author was the Carl Beck
Research Fellow to the Sophia University, Bulgaria.

©1983 American Mathematical Society
0002-9947 /82 /0000-0656 /$04.75

489



490 K.-S. LAU

are Banach spaces [9]. Note that the identity (1.2) implies that W is an isometry on
the nonlinear subspace

U2 = {f € 9M?*: lim % T|f(x) |* dx exists}.
T—- o0 T -T

In [9] Lee and the author have proved that the Wiener transformation W is actually
an isomorphism from 91 onto 2 and the exact isomorphic constants are found. In
[8], the author has investigated the class of convolution operators on 9%, and on Y ?
under the Wiener transformation. It is the main purpose of the present paper to
carry on this study. Among the other results we extend Wiener’s Tauberian identity
(1.2) to a larger class of functions; we obtain different characterizations of multi-
pliers on 92, and we give a Tauberian theorem on 9M* with full generality.

Our paper is organized as follows.

In §2, we present some pertinent results, and use the Wiener transformation to
obtain a characterization of the closed subspace M ? of functions f in IM? which are
continuous under translation, i.e. ||7,f— fll = 0 as h — 0. The space IM? is the
most important subspace in 91? in our consideration.

In §3, the main result is Lemma 3.3. By using this, we offer an alternative proof of
Wiener’s Tauberian identity (1.2) and extend the identity to larger classes of
functions (Theorem 3.4, Theorem 3.5).

In §4, we use Lemma 3.3 to study the covariance functions and spectral measures
of fin OM 2,

The main theorems of this paper are in §5. For any operator ® on 92, the Wiener

transformation defines a unique operator ® on V2 which satisfies

w(ef)=o(wf), feM

If ® is a convolution operator defined by ®(f) =p * f, f € M2, where p is a
bounded regular Borel measure, then @ is given by ®(g) = /i -g, g € V?, where i
is the Fourier-Stieltjes transformation of u [8]. Let (7,)~ be the strong operator
closure of the subspace generated by the translation operators 7, f, # € R. For
f €92 let {7, f ) be the closed subspace generated by 7, f, & € R. An operator ®:
M2 — M2 is called subordinative [3,11] if ®(f) € (7,f)~ for all f € M2 We
prove the following theorem (Theorem 5.3).

THEOREM A. Let ® be a bounded operator on OW?; then the following are equivalent:
(i) ® is subordinative;
(i) ® € (7)";
(iii) ® belongs to the strong operator closure of the convolution operators;
(iv) there exists a unique ¢ € C,(R), the space of bounded continuous functions on
R, such that ®(g) = ¢-g for all g € V2.

We remark that Bertrandias [3] also showed that each subordinate operator ®
corresponds to a ¢ € C,(R) through some abstract representations. Our approach is
quite different from his. We will call ® a multiplier on %3 if it satisfies either one of
the above conditions. Also, we prove that (Theorem 5.2)
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THEOREM B. If we identify the space of multipliers on N2 with C,(R), then the
strong operator topology is stronger than the topology of uniform convergence on
compact subsets of R. Moreover, the two topologies coincide on bounded subsets of
C,(R).

Let 92 denote the subspace of regular functions in 9N, i.e. limy_ . , [7 "¢|f* =0
for all @ > 0, and let M2 = M2 N M2

THEOREM C. Theorems A and B also hold for D2 In addition, if we assume that the
restriction of ® to L*(R) is a bounded linear operator on L*(R), then ®.is a multiplier
on 92 if and only if ® satisfies:

1) &7, =19 Vh ER;

(ii) limy_ o 77 /%% | X7 ®(f) — D(xr /) =0

where x 1 is the characteristic function on [-T, T].

The conclusion on the subspace 92 is different from M2 and M 2. The following
result is a special case of Theorem 5.8, Corollary 5.9: Let M denote the set of fi
where p is a bounded regular Borel measure on R. Consider i as an operator on ‘V,z
(= W((’JIL,2 )); then the strong operator topology, the operator norm topology, and the
uniform topology (as a subspace of C,(R)) on M " coincide.

As a direct application of the multiplier theorems, we obtain the following
Tauberian theorem in §6. This generalizes a result of Wiener [16, Theorem 29;
8, Theorem 4.3].

THEOREM D. Let ® be a multiplier on "JTCf such that ® € C,(R) is nonvanishing. Let
f € M2 satisfy :

. 1 (7 ,
lim ﬁf_T|<I>f| =0.

T— o0

Then for any multiplier ¥ on M2,

. 1 7 ,_
tim 5 w0

The author wishes to thank Professor P. Masani and Dr. R. Nelson for bringing
his attention to these problems in the seminar. Thanks also go to Professor I.
Dimovski for some stimulating conversation while the author was visiting the
Bulgarian Academy of Sciences.

2. Preliminaries. Let 92, 2 and W be defined as in §1. When there is no
confusion, we will use the same notation f € OM? (°V'?) to denote the function f on R
as well as the equivalence class of functions in 9? (<2, respectively). A function
fEM? is called regular if limy_. o 37/7 | f(x)[*dx =0, or equivalently,
lim,_ . o 27 [7 74| f(x) | dx = 0 for all @ > 0. We will use M’ to denote the closed
subspace of all regular functions. Let 7,, & € R, denote the translation operator
defined by 7, f(x) = f(x + h). A function f € M2 is said to be continuous under
translation if ||, f — f1l - 0 as h — 0. We will let 97 denote the class of functions
and let M2 = OM? N M2,
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Let M be the space of bounded regular Borel measures on R and let M, denote the
subspace of measures with finite first moment. In [8], we proved that each p € M,
defines a convolution operator @, on M2 by ®,(f) = p = f (pointwise). The defini-
tion can be extended to all p € M by taking limits under the strong operator
topology.

PROPOSITION 2.1. For each p € M, the convolution operator ®, is a bounded linear
operator on N2 with || @, llog2 = @l ,, where fi is the Fourier transformation of .

Let 9'/2? denote the class of bounded functions ¢ on R and satisfy ¢(u + &) —
¢(u) = o(&'/?) uniformly on u. For each g € V"2, we can choose a g’ € V2 N L?
such that ||lg — g’llq> =0 [9, Theorem 3.3 We define ¢-g, for ¢ € D'/? and
g € V2, to be the equivalent class in 2 containing the pointwise multiplication
¢ - g’. This multiplication is well defined [8] and

(] g 1,2

2.1)  ll¢-gll= lim (2—.[ |o(u) |*|g(u+e) — glu—e)|? du) .
e-0" €/

Also it was proved in [8, Theorem 3.6] that

PROPOSITION 2.2. Let W: 92 — 2 be the Wiener transformation; then for any
w € M such that i € D'/?,
W(pxf)=p-W(f) VfeM
It is easy to show that if u € M and the first moment exists, then fi € 9'/2. In the

following, we will make use of the above proposition to give a useful characterization
of functions in 9?2 This generalizes a result of Wiener [16, p. 160].

THEOREM 2.3. Let f € O and let g = W( f). Then f € 2 if and only if
1 A o N
(2.2) All_{r;o 81_1)151+ R j:oo + L |g(u+e) —g(u—e)|°du=0.

PROOF. Let f € OM?Z; consider the sequence of functions { p, )5, where

/2 n
P e

It is easy to show that || p,|l, = 1, the Fourier transformation of p, is e /" and
belongs to '/%. We claim that ||p,* f— fIl >0 as n > co. Indeed, for any
0 < <1, there exists a & > 0 such that for 0 <|y|<$, II7,f — f |l <e/2, and there
exists an n such that for n > n,

€

alfiz

/ |P.(y) | dy <
R\[-9, 8]
Hence for n > n,,

a%/_ilpn*ﬂx) —f(x) [P dx < -;—Tf_:l [ (=) = 1ol y) dy P e

< L3 /110 =0) = 1) P | p v+ 5.
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By letting T — oo, we have || p, * f — f 1> <e. This completes the proof of the
claim. Now by Proposition 2.2,

(W(f=pax ) u) = (1 —e™")g(u), u€R.
Since W is an isomorphism from 9 onto 2,
lim 11m 2—/ (1 — e/ | g(u+e) — g(u—e)|*du=0.
nh— o0 0+

That |1 — e"“'/ "|> 1 for | u|> n implies equality (2.2). To prove the sufficiency, we
note that

(2.3) (W(f = nf))(u) = (1 —e™)g(u), u€eR.

For ¢ > 0, there exists an 4, such that for 4 > 4,
— 1 —A 00 2 £
—_ — —_ < —.
EI;!+ 2££w+L |g(u+e) —g(u—e)|>du )

Choose § such that for |h|< 8, |1 — e |<e/2llgll? for u € [-4,, A,]. Hence for
gEV?

i — 1 ®© ;
(1 — e*)gl|2 = m;l 2—6[ |1— e P g(u+e) —g(u—e)|Pdu (by(2.1)
e—0" -

< hml

i 28./[’/‘ A]+ .~ A]|1—eih“|2|g(u+£)—g(u—e)]zdu

4 4
< — — =
) + 7 T &
It follows from the isomorphism of W and equation (2.3) that |7, f— fIl - 0 as

h—-0. O

3. Some lemmas. In this section, we will develop some lemmas which lead to
Theorems 3.4, 3.5 and Proposition 4.3.

Let D denote the set of complex Borel measurable functions on [0, o0) such that
SUP7=0 ¥ Jo | f(x)]| dx < co. Let B, denote the subset of all fE€ B such that
SUPr-o ¥ /o | f(x)| dx < 1. For any complex Borel measurable function 4 on R, we
will let A(x) = esssup,s , | A(¢)|, x > 0. It is clear that / is a decreasing function on
R.

LeEMMA 3.1. Let h be defined on (0, 00) such that R is integrable on (0, 00). Then

(@) lim,_ o+ ah(a) = 0, limg_ , BA(B) = 0;

(i) lim, o+ [§f(Tx)h(x) dx =0, limg_ ., [°f(Tx)h(x)dx = O uniformly for all
fEB, and T > 0.

PrOOF. (i) follows easily from the fact that 4 is decreasing and integrable. To
prove the first expression in (ii), we observe that for any f€ %,, a, T >0, by
changing a variable with t = Tx we have

(3.1) anf(Tx) dx| =

f f(2) dt‘ <a.
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Let w(a, x] = h(x +) — h(a + ). Since A is decreasing, u is a negative measure. For
any T, a > 0,

UO"f(Tx)h(x)dx

< [M1AT) () dx
=[xy ax) () = [7( [ d | ()
< ahi(a) — /()"x du(x) = /()“ﬁ(x)dx.

This completes the proof. The second identity is proved in [9, Proposition 4.2(ii)].
a

LEMMA 3.2. Let h be as in Lemma 3.1. For any € > 0, let 0 < o < 8 be such that (1)

ah(a), Bh(B) <e, (i) [sf (Tx)h(x)dx |, | [f (Tx)h(x)dx|<e for all [ € B,
T>0.Letfe€®,,0<a<band0 < c <1 satisfy

-;—,j(;Tf(x) dx — ¢

<e VT €E]a,b].
Then

lj(;wf(Tx)h(x) dx — cfo°°h(x) dx

<8 +1hll)e VTE[%,—%].

ProOF. Without loss of generality, we assume that 4 has finite variation on any

bounded intervals. Let u,(a, x] = h(x + ) — h(a + ). Then integration by parts and
(3.1) yield

[y s = (8 g7 [0 ax |(8) = (- o [*71x) e e)

[ [0 @) ).

a

Hence for any T € [a/a, b/B]

Uowf(Tx)h(x) dx — c/oooh(x) dx + 4e

s"/;ﬁf(Tx)h(x) dx — cj;ﬁh(x) dx

<c

(Bn(B) — ah(a) — [*x (%)) = [*n(x) dx

+e(B1A(B) | +alh(a) | +| [x duy(x)] + 4o

(by (3.2) and by the hypothesis on ¢)
<e®+ lally). O

The following is our main lemma.
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LEMMA 3.3. Let h be as in Lemma 3.1 and let f € B,. Suppose there exists ¢ > 0 and
two sequences {T,} and { A, } such that:

(i) lim,_,7T,= o0 andlim,_ (A4,/T,) = o

(i) lim,,_, o (1/S,) /5" f(x) dx = ¢ for all S, € [T,, T, + A,].
Then there exists a sequence {T,,} withlim,_, T, = oo and

nlingo wa(T,,’x)h(x) dx = cﬁ) h(x) dx.

ProoF. For any £ >0, let ¢, =¢/(8 + |lhll,). Let a, B be the corresponding
number for ¢, asin Lemma 3.2. Let n, be such that for n = n,,

1 (T
’TLf(x)dx—c <e¢ VTET,,T,+4,]

and

Tn+An T;l -1 :
Rl (by (1)).

By Lemma 3.2,

T, T,+4
‘f f(Tx)h(x)dx—cf h(x)dx| <e VTE[ —_ﬁ—]’ n=n,.
In particular, if we let e = & and let T}, be T, /e (which depends on m), then
lim,,_ 7, = o and

11mf AT, x h(x)dx—cf h(x)dx. O

hni— o

As an immediate application of the above lemma, we will extend the Wiener
identity to a larger class of functions. Let x , denote the characteristic function of a
set 4.

THEOREM 3.4. Let f, € A% Let (T}, {A,} be as in Lemma 3.3 with ¢ = || fyll op2,
and let A= UY_|[T,, T, + A,]. Then the function f= f-x, satisfies || fllep>=
W)l

We remark that such an f is easy to obtain by taking {7,}, {4, ]} sufficiently large.

PROOF. Let g = W( f). Then

ex _ ,—iex
e

lu+e) = glu—e) = 30 [ 1) e

_ 2sin ex ;.
= 277‘f_oof(x) PR dx.

Hence (7,g — 7_,g) is the Fourier transformation of \/? f(x)sin ex/x. The Plancherel
Theorem implies that

zlef lg(“”)—g(u—s)lzdu——f | /(%) 2de

- [

dx.
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By taking F(x) = (| f(x) |* + | f(-x) |*)/2 and h(x) = 2sin® x/7x?,
IWfllq2= Tim [ F(Tx)h(x) dx.

T— o0

Similarly, we can define F; for f,. Lemma 3.3 implies that
(e o]
I fllogz = lim [ F(T!x)h(x) dx < | Wf Il
n—o0 Y0
for some sequence {7} diverging to co. On the other hand, since f € US?
1Wf lls = Tm [~ F(Tx)h(x)dx < Tim [~ Fy(Tx)h(x) dx
T “0 T “0
=1IW(foll2 =l fyllggz = I flloge. O

A function f € 92 is said to have slow oscillating quadratic mean if for any & > 0,
there exists a positive function ¢, on [0, 00) such that:

() limy_, (¢(T)/T) = o0
(it) there exists T, such that for T > T,

37 T = 5 [T 1o ax

It is clear that if £ € U2, then f has slow oscillating quadratic mean by taking
¢(T) = €T

<e VT E[T, T+ ¢(T)].

THEOREM 3.5. Suppose f € ON* and has slow oscillating quadratic mean; then
Il f gz = IW(f)ll 2.
PRrOOF. By choosing {T7},} such that

Jim ﬁ

and by the same proof as the last theorem, we have || f lop2 < [|Wf ll«2. To prove
the reverse inequality, we let {7} be a sequence diverging to co and

lim wa(T,,’x)h(x) dx = | Wf Il .
n—o00 Y(Q

For each ¢ = ¢, there exist a,, B, satisfying the conditions (i) and (ii) in Lemma 3.2.
Choose a subsequence {7, } of {7} such that T, = &, T; — o0 as k — o0, and

1
klingo 7;/ “F(x) dx

exists. The sequence of intervals [T}, T} + @, (T} )] satisfies the conditions in
Lemma 3.3, and from the proof of Lemma 3.3, the sequence {7, } satisfies

. 1
len:o A F(T; x)h(x) dx = klin:o ka “F(x) dx

This implies that

IW( )l = lim —f “F(x)dx <l fllg. O
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COROLLARY 3.6 (WIENER). Suppose f € W?; then || f Il egz = WS |l o2

4. The covariance functions and measures. Let f € 9? and let
1 T —
cr(h) = == x +h)f(x)dx.
r(h) = 57 [ S+ ) )

Then {c;}7-o is a family of uniformly bounded continuous, positive definite
functions on R. Consider {c;};~o as a subset of the space of complex valued
functions on R with the topology of pointwise convergence, it is contained in the
compact set {y: |Y(h)|< k Vh € R} for some k > 0. Moreover, on {C—T}T>o’ the
topology of pointwise convergence and the topology of uniform convergence on
compact sets of R coincide [4, §5]. Let

o0
G= N {c:T=k},
k=1

i.e. C;is the set of limit points of {c7}7~ as T - 0. Each ¢ € ;s positive definite
and ¢ is continuous (since f € M ?). For each ¢ € C; the Bochner Theorem yields a
bounded regular Borel measure p satisfying

c(h) = fe”‘“d,u(u), h €R.
R
Let g € V2 and let p, be a bounded regular Borel measure on R defined by

ulE) = 35 [ lglu+ )~ glu—o) P,

where E is a bounded Borel subset in R. Let D, denote the weak* limit of the set
{Be)esoase = 0,ie. D, = My o{n: 0 <e <8}

For f € 9% and lim_, o, 77 /7 f(x + h)f(x) dx which exists for all » € R, Wiener
[13] proved that both C;and D,, g = W( f), are single points and they are related by

the formula
m L (7 T dx = lim L [ e -
@) Jim 57 [ S+ ) TGx) dx = lim 5o [~ e glu+e) = g(u = e) P du,

ie., c(h) = [%e™ du(u) where {u} = D,.

THEOREM 4.1. Given any bounded regular Borel measure p on R, there exists a
g € V2 such that D, = {p}.

PROOF. Let c(h) = [re* dp(u). In [3], Bertrandias constructed a function f €
U N 9?2 such that

c(h) = Tli_.rr:o -;—Tf_;f(x+h)mdx Vh € R.

Let g = W(f). It follows from (4.1) that D, consists of a unique measure and equals
W O
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LEMMA 4.2. Let f € ON? and let g = W(f). Suppose f satisfies the following
conditions: for any compact subset K in R, there exist two sequences {T,} and {S,} such
that:

() lim,_ T, = oo, lim,_, (S,/T,) = 00}

(i) lim, _ o (1/2T) [ f(x + h)f(x) dx exists and equals c(h)VT, € [T,, T, + S,),
h € K.

Then there exists a sequence {&,} which converges to zero and

lim ——1——fwe""“|g(u +¢,) —g(u—e,)Pdu=c(h) VheEK.
n—oo 28, J_o

ProoOF. Note that e”**(g(u + €) — g(u — ¢)) and (g(u + €) — g(u — ¢€)) are the
Fourier transformations of the functions

\/gf(x‘Fh)Sh;ex and \/gf(x)sixlex

respectively. Hence

%fwe‘“"lg(u+e)—g(u—e)Vdu:/_W(Hh)ﬁzjsinzxdx.

% € e/ qx?

We then apply Lemma 3.3 to F(x) = 3(f(x + h)f(x) + f(—(x + h))f(—x)) and
h(x) = 2sin® x/7x? to obtain the conclusion. [
The following proposition will play an important role in the next section.

PROPOSITION 4.3. Let {p,} be a sequence of positive regular Borel measures on R
with ||, || < 1. Then there exists a g € * such that D, contains {p.,}.

PRrOOF. For each p,,, there exists an f, € W? N M2 such that

1T TN — [ ihu
Tlingo 2Tj:Tf,,(x+h)fn(x)dx—f e"dp,(u) VhER

— 00

(Theorem 4.1). We will construct an f € 912 in the following manner: define a new
sequence of functions by

L=f, L=f L=h,
L,=f, =1, lg=1Ff,etc.
For each /,, we will let ¢, be the corresponding covariance function and let
1 (7 —
() = —
T(h) = 2Tf_Tz,,(x + 1)1 (x) dx.

Let A, = 0. Suppose we have chosen 4, and have defined f on [0, 4,]; let B, > 4,
be such that

< 2i Vi € [-27,27].

‘ — f_:"f(x + ) 7(x) dx
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Define f = 0 on [4,, B,] U [-B,,-A4,]. Since ¢! - ¢,, T = oo uniformly on compact
sets, there exists 7, > B, such that for T > T,
l T—B 1

T Fnerm(h) - c,,(h), <% vhel2.2]

LetA4,., = T,” and let

_ [(x— B,), forx € [B,, A1),
flx) = I(x+B,), forxe€[-4,,,,-B,]

Inductively, we can define the function f on R. For each fixed m, there exists
infinitely many ¢, equal to c,,. For each fixed compact subset K in R, we can show
that the conditions in Lemma 4.2 are satisfied (with c¢(k) replaced by c,(h)). Hence
there exists a sequence {¢,} which converges to zero and

lim 1/me"h“lg(u-{—e,,)—g(u—x':n)|2du:cm(h) Vh € K.

n—oo 26, J_o

By using a diagonal method, we can actually obtain a sequence ¢, such that

1

© .
lim = f e |g(u+e,) —glu—¢e,)|*du=c,(h) VhER.
n—oo 2€, J_o
This implies that

o0 o0
lim [ e"dp, (u)=[ e"™dp,(u).
Jim [ dp () = [ e du,(u)

Hence {p,} C D,. U

REMARK 1. If the sequence {u,} in the above proposition is supported by a
compact set, then {p,} is a precompact set in the weak topology induced by C,(R),
where C,(R) is the space of bounded continuous functions on R. This implies that
the corresponding continuous positive definite function {c,} is a precompact subset
in the topology of uniform convergence on compact sets [4, §5]. Hence we can show
that c,(h) — ¢,(0) uniformly on n as h — 0 and |7, f, — £, |l > O uniformly on # as
h — 0. These and the construction of f imply that ||z, f— fll =0 as A >0, ie.
fem

REMARK 2. Each f, in the above proposition is in the class U2, hence each f, is in
M 2. 1t follows from the construction that f is also in ON2.

5. Multipliers. (A) On 92, Let '/? be defined as in §2. For each ¢ € D'/?, we
consider ¢ as a bounded linear operator on V2 defined by ¢ -g. Let V> denote the
image of 92 under W. Let 9, denote the strong operator topology on '/? and on
C,(R), the space of bounded continuous functions on R and let QLC denote the
topology of uniform convergence on compact subsets of R.

PROPOSITION 5.1. On D'/, the topology 7. is stronger than the topology AUC, and
the two topologies coincide on bounded subsets of D'/ 2,
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Proor. Let D, be the set of point mass measures §, where r is a rational in [-k, k).
Proposition 4.3 and its Remark 1 yields a function g, € V.* with D, C D,. Hence
for any ¢ € '/2,

2 == 1 (= 2 2
1o goli3e = Tm o [ [6(u) 8ol + €)= golu— ) P (by (2.1))
+ -0

e—0

= Tm /_Z|¢<u>|2due(u>= sup f_zw(u)lzdu(u)

e—-0
> sup [ (u) P du(u) = sup | #(w) [
RED; rE[-k,

This implies that 7, is stronger than U C. To prove the second assertion, let B be a
bounded subset in ©'/2 and let {¢,), ¢ be in B with ¢, > ¢ in UC. Let g € V%
then for any n > 0, there exists 4, and g, such that for 4 > 4,, 0 <& <,

1, o) P
28£w+[4 |g(u+e) — g(u e)|du<4k (by Theorem 2.3)

where k is the bound of functions in B. Let n, be such that for n > n,,

Ui
J— <___._.
o (e = 1= g

Then for n > n,

19, = )l = T 2o [ [9,(u) — 0(w) Pl (u + ) ~ g(u) P d

e—0

I ey _ _ 5
= 2Mgll h“i 28.[ |g(u+e) —g(u—e)|>du

. E il _ . 2
+2k11m+55f_00+fA |g(u+e) —glu—e)|*du

e—0
<.
This completes the proof. O
Let ¢ € Cy(R); there exists a bounded sequence of functions {¢,} in D'/?
converging to ¢ uniformly on compact sets. By Proposition 5.1, ¢ defines an
operator on V? by ¢-g = lim,_ ., ¢, g (the limit is taken in the sense of V?). It
follows from (2.1) and again Proposition 5.1 that

(5.1) llo-gllq>= lim il-fw |o(u) *|g(u+ &) — g(u— )| du.
e—0t 2870

As a consequence, we have
THEOREM 5.2. The space D'/? in Proposition 5.1 can be replaced by C,(R).

Let {r, )~ denote the strong operator closure of the subspaces generated by the set
of translation operators. Let (7, /)~ be the closed subspace generated by 7, f,
h € R. An operator ®: M2 - OM? is called subordinative [3,10] if ®(f) € (7,1 )"
for all f € 92 For each ®: 9?2 - M2 we will use @ to denote the unique operator
on V? satisfying W(®f) = @ (Wf), f € M2
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THEOREM 5.3. Let ® be an operator on OW?; then the following conditions are
equivalent:
(1) @ is subordinative;
@ e (7))
(iii) ® belongs to the strong operator closure of the set of convolution operators;
(iv) there exists a ¢ € Cy(R) such that ® g = ¢-g Vg € V2

We remark that Bertrandias has proved that @ is subordinate on 92 if and only
if ® corresponds to a ¢ € C,(R) through some abstract representations [3].

PROOF. (ii) = (i) is clear. To prove (i) = (ii), we suppose ® & (7,)"; there exist
f € M2, 1 € (IM?)* such that (®f, V> sup,cg (7, f> ). This implies that ®f is not
in the closed subspace generated by 7, f, # € R, and is a contradiction.

(ii) = (iii) is obvious.

(iil) = (iv). Let M denote the set of bounded regular Borel measures on R and let

M, = [,uEM:f|x|d|u|< oo].

Let M", M, denote the Fourier-Stieltjes transformation of the measures in M and
M, respectively. It is known that M lA is dense in (M; )~ under the U € topology. By
Theorem 5.2, M f is dense in (M ; )~ under the strong operator topology J.. Hence
for any ® € M-, there exists a sequence {u,} in M, such that u, » ® in J_. This
implies f, » ¢ in WC for some function ¢ € C,(R). By Proposition 2.2 and that
fi, € D'/2 we have

®g=lim i, (g)= limj, g=¢-g VgV
nh— o0 n—o0
(iv) = (ii). Note that (7,”)~ contains all trigonometric polynomials, and by
Theorem 5.2, (1,”) "= C,(R). O

We will call an operator ® on 97 a multiplier if it satisfies either one of the above
conditions.

(B) On 9M2. In the proof of Proposition 5.1, the function f we have constructed
can actually be taken in 92 (Remarks 1,2 of Proposition 4.3). Hence all the results
in §5(A) can be carried to M 2. In the following, we will give one more characteriza-
tion of the multipliers on 9% concerning the commutation of ® and 7,, # € R.

LEMMA 5.4. Let f € O 2,
er(h) = 57 [ 10+ W) T

and .y be the measure defined by c;(h) = [z e" du(u), h € R. Then for any ¢ > 0,
there exists an A such that p(R\[-A, A]) <e¢€ for all T > T,,.

PRrOOF. The proof is similar to Theorem 2.3; we let

[2 n
Palx) = T o1
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then || p,ll, = 1 and p, (1) = e“/". By a standard argument, we can show that for
any & > 0, there exists Tj, n, such that for T > T, n > ng, | c(0) — p, * ¢7(0) |[<e.
Since

er(0) = py x er(0) = [ (1= /) dur (u)

and |1 — e /"> ] for | u|> n, we conclude that for any n > n,, T > T,
pr(R\[-ng, no]) <e VT>T,. O

LEMMA 5.5 [7, THEOREM 5.2). Let L be the set of bounded linear functionals [ on 92
that can be represented as

=[5 [0 ) du(r), e,

where g € ON2, and  is a finitely additive regular Borel measure vanishing on bounded
subsets of R. Then L is norm dense in (9N?)*.

Let M? = {f: supy-, 27/ 77| f|* < 0}, then L*(R) is contained in M? and the
Marcinkiewicz space 9 ? can be identified with the quotient space M2/N where
N = {f: I fllorz = 0} [7, Proposition 2.4].

THEOREM 5.6. Let ®: M? — M? be a linear mapping. Suppose ® defines a bounded
linear operator on m2 " (we still use the notation ®), and the restriction of ® on L*(R)
is bounded as an LZ(R)-operator Then ® is a multiplier on N2, if and only if:

i) &7, =7, Vh ER;

(i) limy o, 7 /%, | X7 () = ®(xrf) [ = 0,
where X 1 is the characteristic function of [-T, T'].

PROOF. Suppose @ is a multiplier; it is clear that (i) is satisfied. To prove (ii), we
recall that in [8, Lemma 2.2] we proved that if u € M, (the set of measures p € M
with [| x| d|p|(x) < o), then

fim 57 [ 1xr2(f) — @(xr )P =o0.

Let {p,} be a sequence in M, such that ®, — @ in the strong operator topology on
M2 ; hence for each f,

re?

1 7
Jim Jim 37 ) (%~ OIF =0

We need only show that

(5.2) lim lim 2Tf —®)(xrf) P =0.

n—o T—-o0

By Theorem 5.2, {ji,} converges to ® = ¢ in the U C topology. Since
1 o © )
2_]:-/:00 | (q)“m o (I)I»‘n)(fo) |2 = '/:oo |p‘n By |2 dp‘Ta
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Lemma 5.4 and the 9UC convergence of {®, } implies that for any ¢ > 0, there exists
T, mq such that for T > T, m, n > m,,

%’[: | ((I)”m o (I)u,.)(XTf) |2 <e.

That {®, } also converges to @ in the strong operator topology on L?(R) implies

2Tf (XTf) |2 <e
and equality (5.2).
To prove the sufficiency, we will first show that
(5.3) O(sxf)=®(s)*f VseL}, fEM,

where L% is the set of L?-functions on R with compact supports. Let 4 be the dense
set in 9N2* as in Lemma 5.5 and let / € A4 be represented by

o ] T J—
1= (37 [0 80T ax ) )
where g € 9% and p is finitely additive, vanishes on bounded subsets of R.

@)+ )= [z [ [ r (@GN0 ) 5T v ()

_/Ioo ZTf (./ XT(x)T s(x)) XT(x)g(X)dx)f(y)dydu(T)
(by (i), (ii) and the property of p)

— [ L G500 0 () 8T ) e 1) dvan(r)

(®* is the adjoint operator of ® on L?(R))

= [ X605 1)) 0%y () BT e ()
— [ 05 1)) xr () 8T e ()

= LOO%[_Z@“ * f)(x) g(x) dxdp(T) (by (i) and the property of p)

= (L ®(s = f)).

This implies that (®s) * f = ®(s * f) Vs € L%, f € 92 and D(s) is a convolution
operator on 9N 2. Theorem 5.3(i) implies that

D(sxf)=®(s)xfe{nf).

By taking {s,} to be a sequence with compact support and which converges to §,
weakly, we have [|s, * f — fllogz = 0 as n » oo (see the proof of Theorem 2.3). This
implies that ®( f) € (7, f )~ and hence ® is subordinative, i.e. it is a multiplier. [J

We conclude this subsection by a theorem concerning the norm of the multipliers.
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THEOREM 5.7. Let ® be a multiplier on M2, and let ® = ¢ € C,(R). Then
D0z = 18 o2 = 16l

PROOF. In [7, Theorem 2.4), we proved that if @ is a convolution operator on 9?2,
ie. ® = @, for some p € M, then

19, 1oz = 110, 1 12y = 11411,

The same proof holds for ®, on 97, (we need only observe that the function f
constructed in [7,Lemma 2.3] is in fact in 9Z). Hence 19, llorz = II3ll,,. Let
¢ € C,(R); there exists a bounded sequence fi, such that fi, —» ¢ uniformly on
compact subsets of R and lim,_ lIg,ll, = ll¢ll,. By the lower semicontinuity of
the norm with respect to the strong operator topology, we have [|®[lopz < [Ill . On
the other hand, for any & > 0, there exists u, such that |¢(uy)|= ll¢ll,, — e Let

fo=€"(-)and g, = W(f,), then D, = {3, } and
1@l onz = 1@l = ll¢ - goll

1 o 1/2

il

Il

o0 1,2
60 P a8, () = ol —e.

Hence [|®, [l opz = IIfill . For the norm of @ on V2, we observe that

re?

. ' l 0 v 1/2
1&gl = lim, (-2;;[0o | 6(u) 2| g(u +e) — g(u—e) |2du)

<ol - llghse,

ie. H‘Ifllevrg <|l¢ll,,. By using the same argument as above, we have [|® 1| = l|¢|l
also. This completes the proof. [J

(C) On M2 In [8, Theorem 2.6), we showed that the strong operator sequential
convergence and the norm convergence coincide on the space of convolution
operators. That is just a corollary of the following more complete theorem.

THEOREM 5.8. Consider 0'/? a class of operators on “V.* defined by multiplication;
then the strong operator topology and the topology of uniform convergence coincide.

PROOF. It is clear from (2.1) that the topology of uniform convergence on 9'/? is
stronger then the strong operator topology on ;% On the other hand let D be the set
of point mass measures §, where r is any rational in R. Proposition 4.3 implies that
there exists an f € 9N ( f will not be in M ?) with D, D D, where g = W( f). Hence
it follows from the same proof as Proposition 5.1 that

o - gll&==> sup |$(u) .
u€ER

This implies that the strong operator topology on % is stronger than the topology
of uniform convergence. [
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By Proposition 2.1 and Theorem 5.8 we have

COROLLARY 5.9. On the space of convolution operators on 92 the strong operator
topology and the norm topology coincide.

Note that the norm closure of the set {i: u € M} is a proper subset in C,(R).
Hence the equivalent conditions in Theorem 5.3 will not hold on 2.

6. A Tauberian theorem.
LEMMA 6.1. Let ¢ be a multiplier on 2 such that ® = u is nonvanishing on R. Let
f € M2 such that ||®(f)Il = 0. Then g = W( [ ) satisfies

hm— |g(u+s) glu—e)Pdu=0 V4>0.
O+

PrOOF. Since @ is a multiplier, ¢ is continuous. For any A > 0 there exists a
Q > 0 such that | ¢(u) |> Q for all u € [-4, A]. Hence

— Q% (4 N
lim 28‘[_A|g(u+e) g(u—e¢)[Pdu

R B
<tim " |$(u) P+ |g(u+e) — glu—e) P du

=IW(p* I <IWI*-llp* flidz=0. O
The following theorem generalizes a result of Wiener [16, Theorem 29 and
8, Theorem 4.3].
THEOREM 6.2. Let ® be a multiplier on ON? such that ® = ¢ is nonvanishing. Let
f € M2 satisfy

I 2
lim 2T/_T|<1>f| =0

T- o0

Then for any multiplier ¥ on N2,

r 2 _
Jm 2T |‘I'f|

PROOF. Let \l/ = ¥ and let g = W(f). By Lemma 6.1, we have for any 4 > 0

tim o 190 -8+ ©) — glu— o) P

—>O+

< sup |¢(u)|*- hm 2—/ |g(u+e)—glu—e)du=0

luj<A4
and

lim llm—‘3 __ +f | ¥(u) - | g(u+e) — g(u—e)|* du

A-o o+

1 (-4 ©
< su u) |? hm— + u+te)—glu—ce)|>du=0.
sup [¥(w) - Tm 5] lsut o) —gu—e)|
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The two estimations imply that || \bgll o2 = 0, 1e.

11m— |<1>f|2 0. O
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