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EXTENSION OF WIENER'S TAUBERIAN IDENTITY 
AND MULTIPLIERS ON THE MARCINKIEWICZ SPACE 

BY 

KA-SING LAU1 

ABSTRACT. This is a continuation of the work of Bertrandias, Lee and Lau on 
Wiener's generalized harmonic analysis. Among the other results, we extend Wiener's 
Tauberian identity to cover a larger class of functions; we characterize the multi- 
pliers on the Marcinkiewicz space 62, and we obtain a Tauberian theorem on 6T2 
with full generality. 

1. Introduction. For a complex valued Borel measurable function f on R such that 
limT -00(2T)-J171 If(x) 12 dx exists, Wiener [13] defined the integrated Fourier trans- 
formation (Wiener transformation) g = W( f ) of f as 

(1I .1 ) g(u) = (f + f(x)edx + f1f(x) dx). 

He then introduced a Tauberian theorem and proved that the mean square module 
of the above function f equals the quadratic variation of its transformation g, i.e. 

(1.2) lim fT|I(X) dx= lim 2f_ |(u+ )-g(u-c) |du. 

The above transformation and identity were used by Wiener to study the spectra of 
certain important classes of functions which are not covered by classical harmonic 
analysis (cf. [13,15,16]). 

For eachf E L 2 (R), we let 

If l lf Ill2 lir( f|If(x) 12 dX) 

and 92 = {f: fE L 2 (R), If 11 < oa). We call GA 2 the Marcinkiewicz space [10]. 
For any Borel measurable function g on R, let 

g g 11 T E 
= 

+l ( 2? loI g(U + ?) -g(U-? 12 du) 

and cV2 {g: g is Borel measurable and II gil < o). Such a class of functions was 

first investigated by Hardy and Littlewood [5] and is called the integrated Lipschitz 
class. By identifying functions whose differences have zero norm, both 9Th2 and c(2 
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are Banach spaces [9]. Note that the identity (1.2) implies that W is an isometry on 
the nonlinear subspace 

Iim - If(x)Idx exists}. 

In [9] Lee and the author have proved that the Wiener transformation W is actually 
an isomorphism from 9kL2 onto 'Y2 and the exact isomorphic constants are found. In 
[8], the author has investigated the class of convolution operators on 91?2, and on 2 

under the Wiener transformation. It is the main purpose of the present paper to 
carry on this study. Among the other results we extend Wiener's Tauberian identity 
(1.2) to a larger class of functions; we obtain different characterizations of multi- 
pliers on 912], and we give a Tauberian theorem on 9RL2 with full generality. 

Our paper is organized as follows. 
In ?2, we present some pertinent results, and use the Wiener transformation to 

obtain a characterization of the closed subspace 9Th2 of functions f in 9(2 which are 
continuous under translation, i.e. IITh f - f II 0 as h -O 0. The space 9IL2 is the 
most important subspace in 9kL2 in our consideration. 

In ?3, the main result is Lemma 3.3. By using this, we offer an alternative proof of 
Wiener's Tauberian identity (1.2) and extend the identity to larger classes of 
functions (Theorem 3.4, Theorem 3.5). 

In ?4, we use Lemma 3.3 to study the covariance functions and spectral measures 
off in 9j2. 

The main theorems of this paper are in ?5. For any operator JD on 912, the Wiener 
transformation defines a unique operator JD on c\2 which satisfies 

W((Df =D(Wf )I < 

If JD is a convolution operator defined by e( f) = * f, f C X2, where y is a 
bounded regular Borel measure, then JD is given by JD (g) = g, g E 2, where i 
is the Fourier-Stieltjes transformation of y [8]. Let (Th)- be the strong operator 
closure of the subspace generated by the translation operators Th f, h E R. For 
f E 91t2, let K Th f ) - be the closed subspace generated by Th f, h E R. An operator 1: 
912 ___> 9T2 is called subordinative [3, 11] if (f) E f Th f) for all f E '%c2. We 
prove the following theorem (Theorem 5.3). 

THEOREM A. Let JD be a bounded operator on 9IL2; then the following are equivalent: 
(i) (? is subordinative; 

(ii)D C E Th ; 

(iii) (? belongs to the strong operator closure of the convolution operators; 
(iv) there exists a unique 4 E Cb(R), the space of bounded continuous functions on 

R, such that e1(g) = .gforall g E Tc. 

We remark that Bertrandias [3] also showed that each subordinate operator ID 
corresponds to a p C Cb(R) through some abstract representations. Our approach is 
quite different from his. We will call 1? a multiplier on 912 if it satisfies either one of 
the above conditions. Also, we prove that (Theorem 5.2) 
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THEOREM B. If we identify the space of multipliers on 9IL2 with Cb(R), then the 
strong operator topology is stronger than the topology of uniform convergence on 
compact subsets of R. Moreover, the two topologies coincide on bounded subsets of 
Cb(R). 

Let r denote the subspace of regular functions in (X2, i.e. limT- ,- a IT f 2 0 
for all a > 0, and let %12C = L I2 n LI2 

THEOREM C. Theorems A and B also hold for 912. In addition, if we assume that the 
restriction of qD to L2(R) is a bounded linear operator on L2(R), then ID is a multiplier 
on 9R2c if and only if D satisfies: 

(i) 4tTh = Th4t Vh C R; 
(ii) limToo 2Tf-oo I XT (f) - D(XTf) 2 0 

where XT is the characteristic function on [-T, T]. 

The conclusion on the subspace 912 is different from 912 and 91,2. The following 
result is a special case of Theorem 5.8, Corollary 5.9: Let M denote the set of ii 
where ,u is a bounded regular Borel measure on R. Consider ,i as an operator on r 

( W('9k2)); then the strong operator topology, the operator norm topology, and the 
uniform topology (as a subspace of Cb(R)) on M coincide. 

As a direct application of the multiplier theorems, we obtain the following 
Tauberian theorem in ?6. This generalizes a result of Wiener [16, Theorem 29; 
8, Theorem 4.3]. 

THEOREM D. Let (D be a multiplier on (X2 such that ( C Cb(R) is nonvanishing. Let 
f E 912 satisfy 

im ifTI f 12 = 
0. 

Then for any multiplier I on C 

lim TI '|f 12 = 0. 

The author wishes to thank Professor P. Masani and Dr. R. Nelson for bringing 
his attention to these problems in the seminar. Thanks also go to Professor I. 
Dimovski for some stimulating conversation while the author was visiting the 
Bulgarian Academy of Sciences. 

2. Preliminaries. Let 9k<2, cT2 and W be defined as in ?1. When there is no 
confusion, we will use the same notation f C 9k,2 (Cf2) to denote the function f on R 
as well as the equivalence class of functions in 9(2 ( 2 , respectively). A function 
f C 91t2 iS called regular if limT fT+I If(X) 12 dx = 0, or equivalently, 
limT? 2If 

T+a 
I f(x) 12 dx = 0 for all a > 0. We will use 912 to denote the closed 

subspace of all regular functions. Let Th, h C R, denote the translation operator 
defined by Th f(x) = f(x + h). A function f C 9k2 iS said to be continuous under 
translation if Th f - f 11 0 as h -O 0. We will let 912 denote the class of functions 
and let 6(2C = q2 n Xc2 
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Let M be the space of bounded regular Borel measures on R and let M, denote the 
subspace of measures with finite first moment. In [8], we proved that each i E Ml 
defines a convolution operator eJ? on 912 by D,( f ) = i * f (pointwise). The defini- 
tion can be extended to all y E M by taking limits under the strong operator 
topology. 

PROPOSITION 2.1. For each y E M, the convolution operator IH is a bounded linear 
operator on 9Th2 with I II II I I2 = , where I is the Fourier transformation of i. 

Let 6DD172 denote the class of bounded functions k on R and satisfy c(u + e)- 

+(u) = o(e&/2) uniformly on u. For each g E cTF2, we can choose a g' E c-F2 n L2 
such that hIg - g'I I 2 = 0 [9,Theorem 3.3]. We define 4 g, for 6DE I/2 and 
g E T 2, to be the equivalent class in cT2 containing the pointwise multiplication 

* g'. This multiplication is well defined [8] and 

(2.1) IIVgII = lim (2e| O(U) 1g(U+ g(U- )1 dU) 

Also it was proved in [8, Theorem 3.6] that 

PROPOSITION 2.2. Let W: 912 cT2 be the Wiener transformation; then for any 
u E M such that f E G1/2 

W(, * f )= W( f Vf E '912. 

It is easy to show that if y E M and the first moment exists, then 2 E 6D172. In the 
following, we will make use of the above proposition to give a useful characterization 
of functions in 91t2f. This generalizes a result of Wiener [16, p. 160]. 

THEOREM 2.3. Let f E 9]R2 and let g = W(f ). Then f E 91l2 if and only if 

(2.2) lim lim 2 A| + f I g(u + ) -g(u e) du= 0. 

PROOF. Letf E 9Th2 ; consider the sequence of functions {pn}n I where 
r ~1 n= 

Pn(x) 2 n 
17T n2x2 + 1 

It is easy to show that 11 Pn III = 1, the Fourier transformation of pn is e-lul/n and 
belongs to 6D172. We claim that liPn2 * f-f II 0 as n - oo. Indeed, for any 
0 < E < 1, there exists a 8 > 0 such that for 0 <I y< 8, II Tyf-f II < c/2, and there 
exists an no such that for n > no, 

I ]Pn(Y) I dy 
< 

l 
f jp,,(y)~~dy< 4111f112' 

Hence for n > no, 

I2T I Pn * f (X) )- f(x) 12 dx < 2T | | ( (X x-y Y) -f(x))Pn( Y) dy 12 dx 

If( 1fT (xy) -f(x) | dx) Pn(y) dy + 
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By letting T - oo, we have II Pn * f-f 112 < . This completes the proof of the 
claim. Now by Proposition 2.2, 

(W(f f-P * f ))(u) =(1 e-eU/fn)g(U), u E R. 

Since W is an isomorphism from 9(X2 onto cT2, 

lim lim 1 | - eulu/n)2 I g(u + c)-g(u-) V2du = 0. n --??o_) e0+ 2 -??0 

That I-e-lul/n I> 
I for I u I > n implies equality (2.2). To prove the sufficiency, we 

note that 

(2.3) (W(f- Thf))(u) = (1 - eihu)g(u), u E R. 

For E > 0, there exists an Ao such that for A > Ao 

li 
I+ AeJ + IA g(u + E)g(u -E) 12du <e 

Choose 8 such that for lh < 8I 1 -eihu 1< e/2 11 g 112for u E [-Ao, AO]. Hence for 
g E 2 

11(1 - eihu)g 2 Jim iJ - elhU121g(U + e) - g(U -e) 12du (by(2.1)) 

s lim + f|1 eiu12 g(U + |E) -g(u- E)12du 
e0 [-A,A] R\[-A, A] 
0- + -e 

2 + 2 

It follows from the isomorphism of W and equation (2.3) that II Th f-f 11 0 as 
h -0. D 

3. Some lemmas. In this section, we will develop some lemmas which lead to 
Theorems 3.4, 3.5 and Proposition 4.3. 

Let i33 denote the set of complex Borel measurable functions on [ 0, oo) such that 

supT>OT {fIf(x) dx < oo. Let i33 denote the subset of all f c Ji such that 
SupT>0 l foT I f(x) I dx s 1. For any complex Borel measurable function h on R, we 
will let h(x) = ess sup,,x I h(t) l x > 0. It is clear that h is a decreasing function on 
R. 

LEMMA 3.1. Let h be defined on (0, oo) such that h is integrable on (0, oo). Then 

(i) lim,-O+ ath(a) = O, lim P-,Eh(,8) = O; 
(ii) lim.,o+ f0jf(Tx)h(x) dx = 0, limf- 00 ff(Tx)h(x) dx = 0 uniformly for all 

f c 3q and T> 0. 

PROOF. (i) follows easily from the fact that h is decreasing and integrable. To 
prove the first expression in (ii), we observe that for any f E (B , a, T> O, by 
changing a variable with t = Tx we have 

(3.1) Jf(Tx) dx = * T f f(t) dt s a. 
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Let f(a, x] h(x + )-h(a + ). Since h is decreasing, j is a negative measure. For 
any T, a > 0, 

f f(Tx)h(x) dx f I f (Tx) I h(x) dx 

f (Txf ) x ) - ( f(Tx) dx) dt(x) 

s ah(a) - fx d4(x (x ) dx. 

This completes the proof. The second identity is proved in [9, Proposition 4.2(ii)]. 
DG 

LEMMA 3.2. Let h be as in Lemma 3.1. For any - > 0, let 0 < a < / be such that (i) 

ahh(a), P3h(/3) < e, (ii) I fof'(Tx)h(x) dx f f?f'(Tx)h(x) dx I< E for all f' EE (3 
T> O. Letf C (B1, O < a < band 0c 1 satisfy 

+fTf(x)dx-c <e VTC [a, b]. 

Then 

ff(Tx)h (x) dx-c - h(x) dx ? (8 + 11 h 11) VT C [ . 

PROOF. Without loss of generality, we assume that h has finite variation on any 
bounded intervals. Let ,Ih(a, x] h(x + )-h(a + ). Then integration by parts and 
(3.1) yield 

ff(Tx )h(x )dx = ( /3. /T 1 (x ) dx') h( /3)- (a.ifTIf (x) dx) h (ae) la 0 / a 

-f'/x (TL f(dt) dth(x). 

Hence for any T C [a/a, b/fl] 

f(Tx)h(x) dx-cf h(x) dx <| ff(Tx)h(x) dx -c lafh(x) dx + 4e 

( c 3h(/) - ah(a) - fxdLh(x)) - fh(x) dx 

+e(f1 Ih(3) I +a I h(a) + f3x dMh(x) + 4e 

(by (3.2) and by the hypothesis on c) 

Te f8 + 11 h 11o n )i r 

The following is our main lemma. 
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LEMMA 3.3. Let h be as in Lemma 3.1 and let f E i Suppose there exists c > 0 and 
two sequences {Tn} and {An} such that: 

(i)limn, TTn = oandlimno(An/Tn)= oo; 

(ii) limn,.(I/Sn)ftSnf(x) dx =c for all Sn E [Tn, Tn + An]. 
Then there exists a sequence {Tn} with limn o.Tn' = xo and 

lim f f(Tnx)h(x) dx = c h (x) dx. 
n-o o 0 

PROOF. For any E > 0, let e = E/(8 + 11h II). Let a, /3 be the corresponding 
number for -I as in Lemma 3.2. Let no be such that for n > no, 

+ T (x) dx-c < el VT E [Tn, Tn + A] 

and 

Tn1 + An T e (by (i)). 
/3 a 

By Lemma 3.2, 

f| f(Tx)h(x) dx-cf h(x) dx < VT E[ 
T 

n An] n?n0. 

In particular, if we let e l and let TA be Tno/a (which depends on m), then 
limm , Tm = ?? and 

00 00 
lim f f(Tmx)h(x) dx = c h(x) dx. D 

moo O-, O 

As an immediate application of the above lemma, we will extend the Wiener 
identity to a larger class of functions. Let XA denote the characteristic function of a 
set A. 

THEOREM 3.4. Let fo E 162. Let {Tn,} {An} be as in Lemma 3.3 with c fo f II2, 

and let A = U?L1[Tn, Tn +An. Then the function fA foXA satisfies Il II X2 

1 W(f )11 2. 

We remark that such an f is easy to obtain by taking { Tn}, {An} sufficiently large. 
PROOF. Let g = W(f). Then 

r 00 eiEX-eilEX 

g(u + )-g(u- )e=lJ_1(x) ix eiuxdx 

AJ 0 2sin ex 
f(x) x e-lux dx. 

-,r00 

Hence (1-pg --Tg) is the Fourier transformation of 4 f(x)sin cx/x. The Plancherel 
Theorem implies that 

2 
0 I 

g(U + ?) -g(u -e) 12 du =-S 2tx s2- ex 

r00 n Xxsinx 
y-f g~~u+c1g~~uc11u- fJ dx. 

~00 (x)2m2~ 
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By taking F(x) = (I f(x) I2 + I f(-X) 12 )/2 and h(x) = 2sin2 X/1TX 2, 

IIWfI2 lim = F(Tx)h(x)dx. 
T-- oo 0 

Similarly, we can define Fo for fo. Lemma 3.3 implies that 
00 

II'f IIK2 = lim f F(Tnx)h(x) dx <II Wf II 2 

for some sequence {Tn} diverging to oo. On the other hand, sincef c 1ll2 

11 Wf I2 lim f F(Tx)h(x) dxs lim f F0(Tx)h(x) dx 
T--oo 0 oo 

- IIW(fo)IIT2 IIfoILDm2 IfI LDm2. D 

A function f c 91?2 iS said to have slow oscillating quadratic mean if for any c > 0, 
there exists a positive function PE on [ 0, oo) such that: 

(i) limTO0(0E(T)/T) = - ; 
(ii) there exists TE such that for T > TE 

|Tlf(X)12 dX T_ lfT(x)12 dx <c VT' C [T, T + p(T)]. 

It is clear that if f C y2, then f has slow oscillating quadratic mean by taking 
T2. Oe(T) = eT. 

THEOREM 3.5. Suppose f C 9k2 and has slow oscillating quadratic mean; then 

f ,G2 = 11 W(f )II V2. 

PROOF. By choosing {Tn} such that 

lim 2 JTn If 12 f 11 I2 
n -,o 2 n - Tn 

and by the same proof as the last theorem, we have II f Ill 2 < I Wf I 2. To prove 
the reverse inequality, we let {Tn} be a sequence diverging to x and 

lim JF(Tn/x)h (X ) dX =1 Wf 11 V2 - 
n- oo 0 

For each c =, there exist ak /3k satisfying the conditions (i) and (ii) in Lemma 3.2. 
Choose a subsequence {Tnk} of {Tn} such that Tk = 

akTnk x as k -x o, and 

lim JTk F(x) dx 
k- oo Tk 

exists. The sequence of intervals [Tk, Tk + p 1/k(Tk)] satisfies the conditions in 
Lemma 3.3, and from the proof of Lemma 3.3, the sequence {Tnk} satisfies 

tim )h(x) dx = lim T JTkF(x) dx. 
ko O- fO( k-oo k 

This implies that 

IW(f) 11 I,2 = lim Tk| F(x) dx < 11f Cq2. 0l 
k- oo Tk 
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COROLLARY 3.6 (WIENER). Suppose f E GllS2; then || f W| J2 = || Wf || T2. 

4. The covariance functions and measures. Let f E 'DZ2 and let 

CT(h) f f(x + h) f(x) dx. 

Then (CT)T>O is a family of uniformly bounded continuous, positive definite 
functions on R. Consider (CT)T>O as a subset of the space of complex valued 
functions on R with the topology of pointwise convergence, it is contained in the 
compact set {4i: I A(h) I s k Vh E R} for some k > 0. Moreover, on {CT)T>0o the 
topology of pointwise convergence and the topology of uniform convergence on 
compact sets of R coincide [4, ?5]. Let 

00 

Cf n f{CT: T k}, 
k=1 

i.e. Cf is the set of limit points of (CT)T>o as T -m oo. Each + E Cf is positive definite 
and p is continuous (since f E 92l). For each c E Cf the Bochner Theorem yields a 
bounded regular Borel measure It satisfying 

c(h) f eihu du(u), h E R. 
R 

Let g E T2 and let fE be a bounded regular Borel measure on R defined by 

[(le( ) 2 |g( u + E)g( u- 12 d M6(E)~ - fgu )( I du, 2 E 

where E is a bounded Borel subset in R. Let Dg denote the weak* limit of the set 
tjE}>0 as -* 0, i.e. Dg= nl>4,O: 0 < E < s} 
Forf E 9t2 and limTo0 2fTf+ f(x + h)f(x) dx which exists for all h E R, Wiener 

[13] proved that both Cf and Dg, g = W( f ), are single points and they are related by 
the formula 

I T 00 
ih?? ( + gU 1 

(4.1) lim JTf(x+h)f(x)dx= lim f duhulg(u+e)-g(u-c)lU/u 
T- oo 2T-T eC--O 2 

-c0o 

i.e., c(h) = fl ?Oeihu d,u(u) where {M} = Dg. 

THEOREM 4.1. Given any bounded regular Borel measure r on R, there exists a 
g E cT2 such that Dg = {,}. 

PROOF. Let c(h) = fReihu dl(u). In [3], Bertrandias constructed a function f E 
%52 n 9T2 such that 

c(h) = lim Tf(x + h) f(x) dx Vh E R. 
T- oo 2T -T 

Let g = W( f ). It follows from (4.1) that Dg consists of a unique measure and equals 
M. O 
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LEMMA 4.2. Let f E (X2 and let g = W( f ). Suppose f satisfies the following 
conditions: for any compact subset K in R, there exist two sequences {Tn} and {Sn) such 
that: 

(i) limn-, 00 Tn = x0, liMn yoo,(S,1Tn) = oo; 
(ii) limn - 00 (1/2Tnt)foTnf(x + h)f(x) dx exists and equals c(h) VTn, E [Tn Tn + Sn] 

h C K. 
Then there exists a sequence {jn) which converges to zero and 

lim i |eihgu 12 du = c(h) h hE K. 
n -,oo tn - oo 

PROOF. Note that eihu(g(u + E) - g(u - E)) and (g(u + E) - g(u - E)) are the 
Fourier transformations of the functions 

-f(x + h) x and -f(x) sin ex 

respectively. Hence 

2 fiuhIg(U + e)-g(U-?) 12du f | f ( h e )f() 7Tdx. 

We then apply Lemma 3.3 to F(x) = 4(f(x + h)f(x) + f(-(x + h))f(-x)) and 
h(x) = 2sin2 X/7rX2 to obtain the conclusion. D 

The following proposition will play an important role in the next section. 

PROPOSITION 4.3. Let {tn} be a sequence of positive regular Borel measures on R 
with IIItnII < 1. Then there exists a g E CT2 such that Dg contains {fLn}n 

PROOF. For each MEln there exists an fn C %2 n 9R2 such that 

lim - fn(x + h)fn(x) dx= e dpun(u) Vh E R 
T- oo 2T -T -oo 

(Theorem 4.1). We will construct an f E 9T2 in the following manner: define a new 
sequence of functions by 

1= fl 12 =fl 13 =f2l 

14 = fl, 15 = f2, 16 = f3, etc. 

For each In we will let cn be the corresponding covariance function and let 

cnT(h) = 2 TIn(X + h) ln(x) dx. 

Let Al 0. Suppose we have chosen An and have defined f on [0, An]; let Bn > An 
be such that 

|2B fAnf(x h)f d n + 
)fx-dAnV 

- 
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Definef 0 O on [An, Bj] U [-Bn, -An]. Since cT cn, T oo uniformly on compact 
sets, there exists Tn > Bn such that forT> j> 

T 
I ncT-B(h)- CM(h) < 

- 

Wh E [-2 n2 n]. 
T ~~~~~~2n 

Let An Tn2 and let 

In(x - Bn), forx E [Bn, A+11], 
( 

In(X + Bn ) , for x C [-An+ I, -Bn 

Inductively, we can define the function f on R. For each fixed mn, there exists 
infinitely many Cn equal to cm. For each fixed compact subset K in R, we can show 
that the conditions in Lemma 4.2 are satisfied (with c(h) replaced by cm(h)). Hence 
there exists a sequence {fn} which converges to zero and 

I 00 iu1 lim 2J e | u + Vhn&-(U-En du = cm(h) Vh E K. 
n fo l n -00 

By using a diagonal method, we can actually obtain a sequence -' such that 

lim 2 t | ihu Ig(U + E'n)g(U- ) 12 du =c()t R. lim e ncmh 'VhCR 
n oo2 En -oo 

This implies that 

lim f e dM ; (u) f e dtLm(u). 
n- o 00 - _00 

Hence {jnj C Dg. D 

REMARK 1. If the sequence }iln} in the above proposition is supported by a 
compact set, then AJi} is a precompact set in the weak topology induced by Cb(R), 
where Cb(R) is the space of bounded continuous functions on R. This implies that 
the corresponding continuous positive definite function {Cnj is a precompact subset 
in the topology of uniform convergence on compact sets [4, ?5]. Hence we can show 
that cn(h) -- Cn(A) uniformly on n as h -O 0 and I ThIn -fn II 0 uniformly on n as 
h -O 0. These and the construction of f imply that II Il f --f 0 as h -O 0, i.e. 
f e GX2 

REMARK 2. Each fn in the above proposition is in the class q& 2, hence each fn is in 
9I2. It follows from the construction that I is also in DRY. 

5. Multipliers. (A) On X2. Let GDl /2 be defined as in ?2. For each qs Ez Q7/2, we 
consider 4 as a bounded linear operator on [2 defined by 4 g. Let 0c2 denote the 
image of cT2 under W. Let 'c denote the strong operator topology on 6D1/2 and on 
Cb(R), the space of bounded continuous functions on R and let QICS denote the 
topology of uniform convergence on compact subsets of R. 

PROPOSITION 5.1. On 6DI1/2, the topology 6Tc is stronger than the topology QL t, and 

the two topologies coincide on bounded subsets of Dl/2. 
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PROOF. Let Dk be the set of point mass measures Sr where r is a rational in [-k, k]. 
Proposition 4.3 and its Remark 1 yields a function go E 'VCV2 with Dgo C Dk. Hence 
for any 4),6D)/2 

j)go0tI2 =2- lim (U) 12 1 go(u + )-go(U-) 12 du (by (2.1)) 
?__.,+ 2E -00 

lim f 4)(u)12dpt,(u) = sup f I 
O(u)12dIdL(u) 

?__+0+ -? !Dgo0 

sup | (u)12dp(u)- sup 
I 

O(u)12. 
AEDk -0? Ip&[-k, k] 

This implies that Sc is stronger than t&C. To prove the second assertion, let B be a 
bounded subset in 61/2 and let n 4 be in B with ),, - in QLC. Let g E Tc2; 

then for any -q > 0, there exists AO and EO such that for A > AO, 0 < Eo, 

I A 
+ X 

I g(u + g(U 12 du < 47 (by Theorem 2.3) 

where k is the bound of functions in B. Let no be such that for n > no, 

SUP I (On +-)(X)| 2I< gI 
xe [-A, A] 1gI 

Then for n > no, 

II(4i)n-49)).gII.2 = lim 1 I | n(U)()-4(U) 12 | g(u + )-g(u) 12 du (on - 4p)- g2T2 __ 

211gt| lim 4JA g(u + E) -g(u - ) 12 du 

+ 2k lim 
I 

+ 0I g(u + v) -g(u - ) 12 du 
? +0+ 2? _ 

<'q. 
This completes the proof. O 

Let 4 E Cb(R); there exists a bounded sequence of functions {4,n} in Ql/2 

converging to 4 uniformly on compact sets. By Proposition 5.1, 4 defines an 
operator on cV 2 by 4)-g =limn- -o4 g (the limit is taken in the sense of c\F2). It 
follows from (2.1) and again Proposition 5.1 that 

(5.1)~~~~ ~~~ Il lct2=li I 4(a() 12 l g(U + ?)g(Ue 
12 

du. (51) 11-glV 
- 

1iM 

E, + 2, 
__0 

As a consequence, we have 

THEOREM 5.2. The space 6D1/2 in Proposition 5.1 can be replaced by Cb(R). 

Let ( Th ) - denote the strong operator closure of the subspaces generated by the set 
of translation operators. Let (Thn f) - be the closed subspace generated by ThI, 
h E R. An operator 4: 9R2 __ 6X2 is called subordinative [3, 10] if '( f ) E < Th f) - 

for all f C (9L2. For each 1: M32 _l_ -X2 we will use 4 to denote the unique operator 
on Cc2 satisfying W(?f) = ? (Wf ), f E GX2. 
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THEOREM 5.3. Let 1' be an operator on 'DT2; then the following conditions are 
equivalent: 

(i) 4> is subordinative; 
(ii) &D K < Th ) ; 

(iii) 1' belongs to the strong operator closure of the set of convolution operators; 
(iv) there exists a 4 E Cb(R) such that I g 4) g Vg E 

We remark that Bertrandias has proved that 1' is subordinate on 'rDc if and only 
if 1' corresponds to a 4) E Cb(R) through some abstract representations [3]. 

PROOF. (ii) => (i) is clear. To prove (i) => (ii), we suppose D : K Th) -; there exist 
f E X2, 1 E (jDT2)* such that ((1f, 1)> supheRKhf, 1). This implies that 4If is not 
in the closed subspace generated by Th f, h E R, and is a contradiction. 

(ii) > (iii) is obvious. 
(iii) > (iv). Let M denote the set of bounded regular Borel measures on R and let 

m {I Mf I xdI l o} 

Let M, Ml denote the Fourier-Stieltjes transformation of the measures in M and 
Ml respectively. It is known that Ml is dense in (MI )- under the 1Qt topology. By 
Theorem 5.2, Ml is dense in (M1 )- under the strong operator topology 'c. Hence 
for any 4> E M-, there exists a sequence { n} in Ml such that jn -> in '5c. This 
implies Iu -q- 4 in 1It for some function 4) E C(R). By Proposition 2.2 and that 

i 6D1/2 we have 

qX g = im in( g) = lim In g <9g g E Xc 
n -oo n -oo 

(iv) => (ii). Note that KTh) - contains all trigonometric polynomials, and by 
Theorem 5.2, K Th) - = Cb(R). El 

We will call an operator 1D on jDT2 a multiplier if it satisfies either one of the above 
conditions. 

(B) On 91)2. In the proof of Proposition 5.1, the function f we have constructed 
can actually be taken in jT2h (Remarks 1, 2 of Proposition 4.3). Hence all the results 
in ?5(A) can be carried to jX2. In the following, we will give one more characteriza- 
tion of the multipliers on 'D2T concerning the commutation of 1' and Th, h E R. 

LEMMA 5.4. Let f E 91 C 

CT(h) = fT f(x + h) f(x) dx 

and IT be the measure defined by CT(h) = JR eihu dM(u), h E R. Then for any E > 0, 
there exists an A such that IAT(R\[-A, A]) < E for all T > To. 

PROOF. The proof is similar to Theorem 2.3; we let 

n 
Pn(x) 2 n 

7T n 2x2 ? 1 
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then II px II 1 and P(U) e-lul/n. By a standard argument, we can show that for 
any - > O, there exists To, no such that for T > To, n > no, I CT(0)-Pn * CT(O) I < 

Since 

CT(O) - pA * CT(O) f - euI /n ) dMT(u) 

and I- e -u/n1l 2 for Iu I>n, weconcludethatforany n >no, T> To, 

MT(R\[-no, no]) < VT> To. El 

LEMMA 5.5 [7, THEOREM 5.2]. Let L be the set of bounded linear functionals / on 9Th2 
that can be represented as 

f) fO 2TiTf(x) g(x) dx) d,u(T), fC 92 

where g E 9Th2, and y is a finitely additive regular Borel measure vanishing on bounded 
subsets of R. Then L is norm dense in ((9X2)*. 

Let M2 {f sUPpT>I 2JT_TIf 2 < oo}, then L2(R) is contained in M2 and the 
Marcinkiewicz space 9Th2 can be identified with the quotient space M2/N where 
N = { f: 11 f 11 6X2 = O} [7, Proposition 2.4]. 

THEOREM 5.6. Let (F: M2 __ M2 be a linear mapping. Suppose (F defines a bounded 
linear operator on 9T2h (we still use the notation (F), and the restriction of (D on L2(R) 
is bounded as an L2(R)-operator. Then (F is a multiplier on 9T%2 if and only if: 

(i) 0Th = h?t Vh E R; 
(ii) limT-oo 2TPox I XT(f)( f ) (XTf ) 2 O, 

where XT is the characteristic function of [-T, T]. 

PROOF. Suppose (F is a multiplier; it is clear that (i) is satisfied. To prove (ii), we 
recall that in [8, Lemma 2.2] we proved that if y E Ml (the set of measures y E M 
withf lxI d II(x)< xc), then 

lim 27 I XT?((f) - (XTf ) I 

Let {O} be a sequence in Ml such that F> -( in the strong operator topology on 
9h2 ; hence for each f, 

lrn lim 
n->oo T, -oo 2T IT I n ) 

We need only show that 

(5.2) lim lim 2Tf I (An 
- )(XTf ) 2 0. 

nf--oo T--0oo -oo 

By Theorem 5.2, {uf } converges to (F = 4 in the Q1t topology. Since 

(Ottm 
- 

(Ft,)(xTf ) 2 P In 
- | dPiYT 
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Lemma 5.4 and the 1St convergence of {f D} implies that for any - > 0, there exists 

To, mo such that for T > TO, m, n > mo, 

ITf I( (tm (D,)(XTsf )12< 2 T | 00 ( m n)(XTf)| E 

That {4X, } also converges to 4I in the strong operator topology on L2(R) implies 

I 00 I ( t, 
- 

nl ) (X Tf )12 < E 2T1 - )(Tf 2 

and equality (5.2). 
To prove the sufficiency, we will first show that 

(5.3) 0>(s * f ) 0(s) * f Vs E L 2 f E= (Rr2 

where L2 is the set of L2-functions on R with compact supports. Let A be the dense 
set in 5YR2* as in Lemma 5.5 and let / E A be represented by 

K'~f> ( 2T f ( Tf(x) g(x) dx) dl(T) 

where g E qD12 and jA is finitely additive, vanishes on bounded subsets of R. 

K', (Os) g) f00,fT(f00 0-y(s(x))f(y) dy) g(x) dx djp(T) 

f f00 f 00( (XT(X)T-ys(x))x(x) 7Xdx)f(y) dyd,(T) 

(by (i), (ii) and the property of jA) 

= I( 2T r(r XT(X)T Ys(X). t*(XT(X) g(X) ) dX)f(y) dydA(T) 

(0I* is the adjoint operator of 1' on L2(R)) 

- ff 2TJ XT(X)(S * f )(x)- (I*(XT(X) g(x)) dx dl(T) 

- f001f0 >(XT * f )(x)-XT(x) g(x) dx d1u(T) 

- f00'f2T '(s * f )(X) g(x) dx d,a(T) (by (i) and the property of MA) 

- (l, (s* f)) 

This implies that ((Ds) * f = (D(s * f ) Vs E L2, f E 12c and 4>(s) is a convolution 
operator on 6 24. Theorem 5.3(i) implies that 

(D(s*) = 4(s) * K f (h ). 

By taking {S } to be a sequence with compact support and which converges to So 
weakly, we have 11 sn * f - f6 I2 0 as n xo (see the proof of Theorem 2.3). This 
implies that 0(f ) E (Th f) - and hence 1 is subordinative, i.e. it is a multiplier. C] 

We conclude this subsection by a theorem concerning the norm of the multipliers. 
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THEOREM 5.7. Let 4 be a multiplier on (D2T and let 4 = E Cb(R). Then 

11 11 II2Irc 11 -11 11V2 100. 

PROOF. In [7, Theorem 2.4], we proved that if (1 is a convolution operator on 9)72, 

i.e. PD - 4 for some M e M, then 

|| ?Il ||2 =lLIIL2( R) 11A21 

The same proof holds for O on rThc (we need only observe that the function f 
constructed in [7, Lemma 2.3] is in fact in 9T2h). Hence 11 111 I92 

- 121 '1. Let 
4 E Cb(R); there exists a bounded sequence an such that ,2n 4 uniformly on 
compact subsets of R and hM n -llfilnl 1= 14. By the lower semicontinuity of 
the norm with respect to the strong operator topology, we have I1 I 1 ? 11 4) 1 x. On 
the other hand, for any E > 0, there exists u0 such that I 4(u0) I> 14K o-e. Let 

fo = euo() and gO = W(fo)q then Dgo {0uo} and 

II 1 1 6L2 > II(D>fo - goI4gI 

lim - (U) 12 1 g(U + e) - g(U )I du) 

Hence (f 
~~~0 

1/2 I ( 4 ( u) 12 dSuo( u)) I> 11 II 0" _ e 

Hence 11 4p, 11,DX2 -=II 
I 

II 0o. For the norm of 4 on r2' we observe that 

i.e. IIIl I ? II4)IIll+ l o By using the same argument as above, we have II 4? II > II4)IIl o 

also. This completes the proof. D 

(C) On 9Thr2. In [8, Theorem 2.6], we showed that the strong operator sequential 
convergence and the norm convergence coincide on the space of convolution 
operators. That is just a corollary of the following more complete theorem. 

THEOREM 5.8. Consider I7'l/2 a class of operators on gU2 defined by multiplication; 
then the strong operator topology and the topology of uniform convergence coincide. 

PROOF. It is clear from (2.1) that the topology of uniform convergence on Q'72 iS 

stronger then the strong operator topology on C\f2. On the other hand let D be the set 
of point mass measures 3;r where r is any rational in R. Proposition 4.3 implies that 
there exists an f E 1DT2 ( f will not be in 9Th2) with Dg1 D D, where g =W(f(). Hence 
it follows from the same proof as Proposition 5.1 s that 

II4) gIIv2 sup I )(u) 12. 
u&R 

This implies that the strong operator topology on Cf2 is stronger than the topology 
of uniform convergence. D 
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By Proposition 2.1 and Theorem 5.8 we have 

COROLLARY 5.9. On the space of convolution operators on (D12 the strong operator 
topology and the norm topology coincide. 

Note that the norm closure of the set {I: c & M} is a proper subset in Cb(R). 

Hence the equivalent conditions in Theorem 5.3 will not hold on D12. 

6. A Tauberian theorem. 

LEMMA 6.1. Let 4 be a multiplier on 91L2 such that I' = y is nonvanishing on R. Let 
f & D12 such that 11 I(f )II = 0. Then g = W(f ) satisfies 

I 
)0 A I g(u + E) - g(u -E) j2 du =0 VA > 0 

PROOF. Since 1' is a multiplier, 4) is continuous. For any A > 0 there exists a 
Q > 0 such that I 4(u) I > Q for all u E [-A, A]. Hence 

lim Q fA g(u ? E)-g(u - ) 12 du e 0 E -A 
I 

lim- I q9(U) 12 _I g(u + E)g(U -E) j2du <-~ 
li 

-~ 

lW(,j f)112 IIWI12 1, l* f 11m2=O 

The following theorem generalizes a result of Wiener [16, Theorem 29 and 
8, Theorem 4.3]. 

THEOREM 6.2. Let 1D be a multiplier on D12 such that ID4)= is nonvanishing. Let 
f & D12 satisfy 

T-r o 2T JT 

Then for any multiplier 'P on C 

lim qff 1tt2 = 0 
T- yoo -T 

PROOF. Let 4 = and let g = W(f ). By Lemma 6.1, we have for any A > 0 

? sup | (u)~2 im+ 2e U' g(u?+ ) -g(u- e)12 du =0 

and 

li1 -A I JXU 12_I ( + u) -2 g(u - t)g(-) 12 du lim li 9 A f o 4 ) 2 ( ) V 

2e~ ~ -AA A~~~~~ 

? sup 4i(u)12S lim 2 J + A I g(u + )-g(u- 12du = 0. 
IUI>A e- o+ + A 
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The two estimations imply that I I 4g -I 2 = 0, i.e. 

lim - -T^l= 
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